ФЭНДОМ


<tr><th style="">Создатель:</th><td class="" style="">

КГБ, 8-е управление </td></tr><tr><th style="">Создан:</th><td class="" style=""> ? </td></tr><tr><th style="">Опубликован:</th><td class="" style=""> 1990 г. </td></tr><tr><th style="">Размер ключа:</th><td class="" style=""> 256 бит </td></tr><tr><th style="">Размер блока:</th><td class="" style=""> 64 бит </td></tr><tr><th style="">Число раундов:</th><td class="" style=""> 32\16 </td></tr><tr><th style="">Тип:</th><td class="" style=""> Сеть Фейстеля </td></tr> </table>


ГОСТ 28147—89 — советский и российский стандарт симметричного шифрования, введённый в 1990 году. Полное название — «ГОСТ 28147—89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования». Блочный шифроалгоритм. При использовании метода шифрования с гаммированием, может выполнять функции поточного шифроалгоритма.

По некоторым сведениям[1], история этого шифра гораздо более давняя. Алгоритм, положенный впоследствии в основу стандарта, родился, предположительно, в недрах Восьмого Главного управления КГБ СССР (ныне в структуре ФСБ), скорее всего, в одном из подведомственных ему закрытых НИИ, вероятно, ещё в 1970-х годах в рамках проектов создания программных и аппаратных реализаций шифра для различных компьютерных платформ.

С момента опубликования ГОСТа на нём стоял ограничительный гриф «Для служебного пользования», и формально шифр был объявлен «полностью открытым» только в мае 1994 года. К сожалению, история создания шифра и критерии разработчиков до сих пор не опубликованы.

Описание Править

ГОСТ 28147-89 — блочный шифр с 256-битным ключом и 32 циклами преобразования, оперирующий 64-битными блоками. Основа алгоритма шифра — Сеть Фейстеля. Базовым режимом шифрования по ГОСТ 28147-89 является режим простой замены (определены также более сложные режимы гаммирование, гаммирование с обратной связью и режим имитовставки). Для зашифрования в этом режиме открытый текст сначала разбивается на левую и правую половины (обозначены ниже как L и R). На i-ом цикле используется подключ ki:

R_{i+1} = L_i
L_{i+1} = R_i \oplus f(L_i, K_i) ( \oplus = двоичное «исключающее или»)

Для генерации подключей исходный 256-битный ключ разбивается на восемь 32-битных блоков: K1…K8.

Расшифрование выполняется так же, как и зашифрование, но инвертируется порядок подключей Ki.

Функция f(L_i, K_i) вычисляется следующим образом:

Li и Ki складываются по модулю 232.

Результат разбивается на восемь 4-битовых подпоследовательностей, каждая из которых поступает на вход своего узла таблицы замен, называемого ниже S-блоком. Общее количество S-блоков ГОСТа — восемь, т. е. столько же, сколько и подпоследовательностей. Каждый S-блок представляет собой перестановку чисел от 0 до 15. Первая 4-битная подпоследовательность попадает на вход первого S-блока, вторая — на вход второго и т. д.

Если S-блок выглядит так:

1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12

и на входе S-блока 0, то на выходе будет 1, если 5, то на выходе будет 7 и т. д.

Выходы всех восьми S-блоков объединяются в 32-битное слово, затем всё слово циклически сдвигается влево на 11 битов.

Все восемь S-блоков могут быть различными. Фактически, они могут являться дополнительным ключевым материалом, но чаще являются параметром схемы, общим для определенной группы пользователей. В ГОСТ Р 34.11-94 для целей тестирования приведены следующие S-блоки:

ГОСТ 28147-89
изображение </span>
Номер S-блока Значение
1 4 10 9 2 13 8 0 14 6 11 1 12 7 15 5 3
2 14 11 4 12 6 13 15 10 2 3 8 1 0 7 5 9
3 5 8 1 13 10 3 4 2 14 15 12 7 6 0 9 11
4 7 13 10 1 0 8 9 15 14 4 6 12 11 2 5 3
5 6 12 7 1 5 15 13 8 4 10 9 14 0 3 11 2
6 4 11 10 0 7 2 1 13 3 6 8 5 9 12 15 14
7 13 11 4 1 3 15 5 9 0 10 14 7 6 8 2 12
8 1 15 13 0 5 7 10 4 9 2 3 14 6 11 8 12

Согласно данным книги Б. Шнайера «Прикладная криптография», эти же блоки используются также Центральным Банком РФ.

В тексте стандарта указывается, что поставка заполнения узлов замены (S-блоков) производится в установленном порядке, т.е. разработчиком алгоритма.

Достоинства ГОСТа Править

  • бесперспективность силовой атаки (XSL-атаки в учёт не берутся, т.к. их эффективность на данный момент полностью не доказана);
  • эффективность реализации и соответственно высокое быстродействие на современных компьютерах.
  • наличие защиты от навязывания ложных данных (выработка имитовставки) и одинаковый цикл шифрования во всех четырех алгоритмах ГОСТа.

Криптоанализ Править

Существуют атаки и на полнораундовый ГОСТ 28147-89 без каких-либо модификаций. Одна из первых открытых работ, в которых был проведен анализ алгоритма, использующим слабости процедуры расширения ключа ряда известных алгоритмов шифрования. В частности, полнораундовый алгоритм ГОСТ 28147-89 может быть вскрыт с помощью дифференциального криптоанализа на связанных ключах, но только в случае использования слабых таблиц замен. 24-раундовый вариант алгоритма (в котором отсутствуют первые 8 раундов) вскрывается аналогичным образом при любых таблицах замен, однако, сильные таблицы замен делают такую атаку абсолютно непрактичной.

ыыыыыыыыыыыыыы низкой сложностью. Криптоанализ алгоритма продолжен в работе [источник?].

В 2004 г. группа специалистов из Кореи предложила атаку, с помощью которой, используя дифференциальный криптоанализ на связанных ключах, можно получить с вероятностью 91,7% 12 бит секретного ключа. Для атаки требуется 235 выбранных открытых текстов и 236 операций шифрования. Как видно, данная атака, практически, бесполезна для реального вскрытия алгоритма.


Критика ГОСТа Править

Основные проблемы ГОСТа связаны с неполнотой стандарта в части генерации ключей и таблиц замен. Тривиально доказывается, что у ГОСТа существуют «слабые» ключи и таблицы замен, но в стандарте не описываются критерии выбора и отсева «слабых». Также стандарт не специфицирует алгоритм генерации таблицы замен (S-блоков). С одной стороны, это может являться дополнительной секретной информацией (помимо ключа), а с другой, поднимает ряд проблем:

  • нельзя определить криптостойкость алгоритма, не зная заранее таблицы замен;
  • реализации алгоритма от различных производителей могут использовать разные таблицы замен и могут быть несовместимы между собой;
  • возможность преднамеренного предоставления слабых таблиц замен лицензирующими органами РФ;
  • потенциальная возможность (отсутствие запрета в стандарте) использования таблиц замены, в которых узлы не являются перестановками, что может привести к чрезвычайному снижению стойкости шифра.

Примечания Править

См. также Править

Ссылки Править

Литература Править

  • Мельников В. В. Защита информации в компьютерных системах. — М.: Финансы и статистика, 1997.
  • Романец Ю. В.. Тимофеев П. А., Шаньгин В. Ф. Защита информации в компьютерных системах и сетях. — М.: Радио и связь, 1999.
  • Харин Ю. С., Берник В. И., Матвеев Г. В. Математические основы криптологии. — Мн.: БГУ, 1999.
  • Герасименко В. А., Малюк А. А. Основы защиты информации. — М.: МГИФИ, 1997.
  • Леонов А. П., Леонов К. П., Фролов Г. В. Безопасность автоматизированных банковских и офисных технологий. — Мн.: Нац. кн. палата Беларуси, 1996.
  • Зима В. М.. Молдовян А. А., Молдовян Н. А. Компьютерные сети и защита передаваемой информации. — СПб.: СПбГУ, 1998.
  • Шнайер, Б. 14.1 Алгоритм ГОСТ 28147-89 // Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си = Applied Cryptography. Protocols, Algorithms and Source Code in C. — М.: Триумф, 2002. — С. 373-377. — 816 с. — 3 000 экз. — ISBN 5-89392-055-4
en:GOST 28147-89

fr:GOST 28147-89 tg:ГОСТ 28147-89

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики